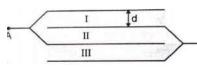
Assinment-3 ANSWER KEY

1. (c) Here the system can be considered as two capacitors C_1 and C_2 connected in series. CASE BASED STUDY QUESTION

2. 1.(c) 2. (b) 3. (b) 4.(c)

2 MARKS ANSWERS


3. The capacitance of the parallel plate capacitor, filled with dielectric medium of dielectric constant K is given by $C=K \epsilon_0 A/d$

The capacitance of the parallel plate capacitor decreases with the removal of dielectric medium as for air or vacuum K = 1 and for dielectric K > 1.

If we disconnect the battery from capacitor, then the charge stored will remain the same due to conservation of charge.

The potential difference across the plates of the capacitor is given by V = q/CSince q is constant and C decreases which in turn increases V and therefore E increases as E = V/d.

4.

 $C_p=3C=3 A\epsilon_O/d$

5. The capacitance of this capacitor is 221.2×10^{-13} F. The charge stored in any one of the plates 221.2 pC.

3 MARKS ANSWERS

6. Dielectric slab of thickness 5mm is equivalent to an air capacitor of thickness $=\frac{5}{10}$ mm

Effective separation between the plates with air in between is = 5.5 mm

Effective new capacitance = 200 μ F X $\frac{5}{5 \cdot 5}$ = 182 μ F

(i) Effective new electric field = $\frac{100}{5 \cdot 5 \times 10^{-3}}$ =18182 V/m

New energy stored / original energy stored = 10/11

7.Given : $C_A = C_B = C$, Dielectric costant = K

Energy stored = $\frac{1}{2}Cv^2$ (i) Net capacitance with switch S closed = C+C= 2C E₁= Energy stored = CV² (ii) After switch S is opened, capacitance of each capacitor = KC

Energy stored in capacitor $A = \frac{1}{2}kcv^2$ (iii) For capacitor B, Energy stored $= \frac{cv^2}{2k}$ (iv) From equations (iii) & (iv) $E = \text{Total energy stored} = \frac{1}{2}cv^2 \left(\frac{k^2+1}{k}\right)$ Required Ratio $= \frac{E1}{E_2} = \frac{2k}{k^2+1}$

5-MARKS ANSWERS

8. Answer:

Given : $q_1 = 360 \ \mu\text{C} = 360 \ x \ 10^{-6} \ \mu\text{C}$, $q_2 = 120 \ \mu\text{C}$ = 120 x $10^{-6} \ \text{C}$

C =
$$\frac{q_1}{V_1}$$
. Also C = $\frac{q_2}{V_2}$ and C = $\frac{q_3}{V_3}$
[∵ Capacitor is the same

$$\therefore \qquad \frac{q_1}{V_1} = \frac{q_2}{V_2}$$

$$\Rightarrow \qquad \frac{(360 \times 10^{-6})}{V} = \frac{(120 \times 10^{-6})}{(V - 120)}$$

On solving, V = 180 V

$$C = \frac{360 \times 10^{-6}}{180}$$

= $2\mu F$ is the unknown capacitance.

Now the voltage has been increased by 120 V, then V = 180 + 120 = 300 V

$$C = \frac{q_3}{300} = 2\mu F$$

$$q_3 = 300 \times \mu C$$

 $q_3 = 600 \ \mu C$ would be charge on the capacitor if voltage were increased by 120 V. [Ans : V = 60 V, c = 2 pF, Q3 = 200 μC].

9.

Given : $q_1 = 360 \ \mu\text{C} = 360 \ \times 10^{-6} \ \mu\text{C}$, $q_2 = 120 \ \mu\text{C}$ $= 120 \ \times 10^{-6} \ \text{C}$ $C = \frac{q_1}{V_1}$. Also $C = \frac{q_2}{V_2}$ and $C = \frac{q_3}{V_3}$ [\because Capacitor is the same $\therefore \quad \frac{q_1}{V_1} = \frac{q_2}{V_2}$ $\Rightarrow \quad \frac{(360 \times 10^{-6})}{V} = \frac{(120 \times 10^{-6})}{(V - 120)}$ On solving, $V = 180 \ \text{V}$ $C = \frac{360 \times 10^{-6}}{180}$ $= 2\mu\text{F}$ is the unknown capacitance. Now the voltage has been increased by 120 V,

then V = 180 + 120 = 300 V

$$C = \frac{q_3}{300} = 2\mu F$$
$$q_3 = 300 \times \mu C$$

 $q_3 = 600 \ \mu C$ would be charge on the capacitor if voltage were incresed by 120 V. [Answer : V = 120 V, c = 2 μ F, Q = 400 μ C]

10.

Given :
$$C_1 = C_2 = C_3 = C_4 = C_5 = 2\mu F$$

 $= 2 \times 10^{-6} F$
(*i*) Capacitors C_2 , C_3 and C_4 are in parallel
 $\therefore \quad C_{234} = C_2 + C_3 + C_4 = 2 + 2 + 2$
 $\therefore \quad C_{234} = 6\mu F$
Capacitors C_1 , C_{234} and C_5 are in series
 $\therefore \quad \frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_{234}} + \frac{1}{C_5} = \frac{1}{2} + \frac{1}{6} + \frac{1}{2} = \frac{7}{6}\mu F$
 $C_{equivalent} = \frac{6}{7}\mu F = \frac{6}{7}10^{-6} F$
(*ii*) Charge drawn from the source
 $Q = C_{eq} V = \frac{6}{7} \times 7 \ \mu C = 6 \ \mu C$